专利号:CN201811304821.9
摘要:本发明提供了一种基于时序扩展和邻域保持极限学习机的间歇过程故障检测方法,主要包括如下步骤:(1)收集多个批次正常情况下的间歇过程数据;(2)将收集到的三维数据展开为二维数据并标准化;(3)建立时序扩展和邻域保持极限学习机模型;(4)建立正常数据下平方预测误差SPE和霍特林T2的统计量,求取控制限;(5)收集在线的间歇过程数据;(6)将在线数据通过建立的时序扩展和邻域保持极限学习机模型进行投影;(7)求取在线数据的SPE和T2统计量,判断有无故障发生。本发明在投影过程中同时保持了数据的空间局部近邻结构和动态时序结构,避免了对过程数据满足高斯分布的假设,更加满足实际工业过程。